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Decay of Correlations in Classical Fluids 
with Long-Range Forces 
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We show with simple arguments that, as a consequence of the Poisson equation, 
the correlations of a charged system at equilibrium decay faster than any inverse 
power, if they are integrable and monotonous at infinity. For all other long- 
range systems (with potential O(x)~blx[-' ,  Ixl- '  ~,  0<s<v ,  s e v - 2 ) ,  the 
decay is bounded below by an inverse power. 

KEY WORDS: Long-range forces; Coulomb systems; BGY hierarchy; 
correlations. 

1. I N T R O D U C T I O N  

The decay of  the correlations in classical fluids has been the subject of a 
considerable number  of investigations from the physical and mathemat ica l  
viewpoint. The general si tuation for the high- temperature  (low-density) 
homogeneous  phase can be described as follows. If the potential  ~b(x) has 
finite range or is exponential,  the correlations cluster exponential ly fast. If 
O(x)-blx]-~, Ixl--, oo, s>0 ,  is algebraic, the decay of the correlations is 
also always algebraic, with the only exception of  the C o u l o m b  systems 
(s = v - 2 ,  v = space dimension) where the decay is faster than any inverse 
power. 

More  precisely, when ( ~ ( x ) ~ b l x j  " with s > v  (integrable case) the 
correlations cluster exactly as Ix t - "  (see Ref. 1 and the references quoted  
there). When  0 < s  < v (nonintegrable case) and s r v -  2, the heuristic 
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argument that the direct correlation function c(x) behaves as -/~b(x), 
Ixl ~ oe (Ref. 2) leads to a Ixl-(2v-~) decay. However, in the Coulomb case 
( s = v - 2 )  the Debye-Hiickel theory gives an exponential decay, a fact 
which has been rigorously established in Ref. 3 at sufficiently high tem- 
perature or low density. It is also known that in the two-dimensional one- 
component jellium and for a special value of the temperature, the 
correlations have a Gaussian decay. (4) Thus in the class of systems with 
algebraic potentials, the Coulomb case appears to play an exceptional role 
since only for it a decay faster than any inverse power can be obtained. 

We show in this paper that the basic reason for this situation is the 
harmonicity of the Coulomb potential. We work in the following setting: 
we assume that the correlations of an infinite homogeneous phase are given 
and obey the BGY hierarchy at temperature /~ 1 (the validity of the ther- 
modynamic limit and of the BGY equations are not established here; see 
Ref. 5). Then we analyze the asymptotic behavior of the terms of the BGY 
equation in relation with the exponent s of the potential: constraints are 
imposed on the decay of the correlations, provided that they are integrable 
and that some natural bounds are verified. When s = v -  2, the relation 
between the charge density 'and the field generated by it is local, i.e. given 
by a differential equation, the Poisson equation. Our main result is that, as 
a consequence of this fact, the correlations of a charged fluid cannot have a 
monotonuous algebraic decay. In all other cases, only a power law decay is 
compatible with the conditions of thermal equilibrium. In the analysis, one 
must distinguish between the one-component plasma (OCP) and mul- 
ticomponent systems. The latter case involves two different types of 
correlations, the charge-charge and the charge-particle correlations, which 
are linked in the BGY equations, and one must discuss it separately. 

It is known that starting from the monotonuous Debye-Hiickel regime 
and lowering the temperature, oscillations will occur. (6) In fact, the expec- 
ted analytic properties of the structure factor lead to an exponential 
oscillating decay. (7) Such a behavior is not excluded by our arguments, nor 
do we exclude an inverse power law decay with oscillations (typically like 
lxl p cos 2ix[ ). In the non-Coulomb cases, we obtain essentially Ixl-(2v-s) 
as lower bound on the decay, in agreement with the usual findings involv- 
ing assumptions on the direct correlation function. A situation of special 
interest is v = 2, s = 1 (the electrons at the surface of the liquid helium) 
where we have Ixl-3 as an exact lower bound. 

The simplest forms of our arguments are found in Propositions 1 and 
4. Some proofs have been relegated to appendixes in order to keep the 
presentation as simple as possible. 
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2. G E N E R A L  S E T T I N G  

We consider infinitely extended homogeneous equilibrium states of 
charged particles in n2 v (v = space dimension, v >~ 2). 

For an N-component system, we denote by q = (x, c~) the position x 
and thereafter species a of a particle of charge e~, e = 1, 2,..., N. We include 
also jellium systems with an additional uniform external charge density PB. 

The particles interact by means of a two-body potential ~b(qlq2)= 
e~le~20(xl- x2) with the following properties: 

b 
(a) ~b(x)=~-~;+~b~ 0 < s < v ,  b e 0  

(We include also the two-dimensional Coulomb case, v = 2 ,  s = 0 ,  
~(x) = - l n ( I x t / t  ) + ~b~ 

(b) ~b~ is a spherically symmetric potential with compact support, 
which is differentiable except possibly at x = 0  and such that (V~b)(x) is 
integrable at x = 0. 

In multicomponent systems, ~b~ includes the local repulsion effects 
needed for thermodynamic stability. In the Coulomb jellium, we may take 
~~ =0. 

Notice that the Fourier transform ~ ( k ) = S d x ~ ( x  ) exp(ikx) of ~b(x) 
behaves as (s) 

~( k ) =C ~b lk l~ -v+~~  ~-~, rkJ ~ 0  

C~ = 2 ~ ~r v/2 F((v - s)/2) (2.1) 
r(s/2) 

The correlation functions p(q~ . . .q , )  of the state at temperature /~-1 
(P(q~), P(q~q2),... being, respectively, the singlet, doublet .... densities) are 
assumed to satisfy the BGY hierarchy 

fi ' V , p ( q ~ . . . q , ) =  ~ r (q lq j )p (q~ . - . q , )  
]=  2 

+ ; dqF(q~ q)[p(qq~.. ,  q,) - p(q) p(q~.. ,  q,)J  (2.2) 

where F(q 1 q2)= e~e~2F(x~ -- x2) = --e~e~2(Vfb )(xl -- x2) is the force. 
For all s, 0 < s < v, Eq. (2.2) with the truncation in the integrand of the 

right-hand side is the appropriate form of the equilibrium equation. When 
0 < s ~ < v - 2 ,  the system is necessarily overall neutral (Proposition 6 of 
Ref. 9) 

N 

Z e~p~+p~=O [p =p(q)]  (2.3) 
~ = 1  
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and - S  dqF(q~ q) p(q) = e=L ~ dyF(x~ - y)ps is formally the contribution of 
the background. When v -  2 < s < v there are no constraints on the p~, but 
either (VF)(x) ( v - 2 < s < ~ v - 1 )  or F(x) ( v - 1  < s < v )  are integrable at 
infinity and ~ dqF(ql q) p(q) vanishes in a homogeneous state because of the 
antisymmetry of the force (see the discussion of the BGY equations for 
long-range forces in Ref. 9). 

Throughout the paper we shall only consider fluid phases with decay 
of the correlations insuring that the integral in the right-hand side of (2.2) 
is absolutely convergent [see (2.8) below]. 

It will be convenient to write the hierarchy (2.2) in an alternative 
equivalent form. We introduce as in Ref. 10 the excess particle density at q 
when particles are fixed at q~--. q,:  

P ( q [ q l '  q,,)- P(qq~" q') P(q) + ~ (~qqj (2.4) 
P(ql'"q~) j=l 

6qq, = a(x - xj) 6~, 

The corresponding charge density generates the field E(x; q, ' . .  q,) at x 
N 

E(x; ql""q, )  = f dyF(x -  y) ~ e~p(y~tq~'"q,,) (2.5) 
c ~ = l  

In terms of these quantities the hierarchy (2.2) becomes (using the fact that 
the force is antisymmetric) 

fl-Wx[p(qQ) - p(q) p(Q)]  = e~E(x; Q) p(q) p(Q) 

+ ~ r(qqj)[p(qQ)-p(q) p(Q)]  + f  dq'F(qq')R(qq'Q) (2.6) 

where we have set Q = ( q l ' " q , )  and 

R(qq'Q) = p(qq'Q) - p(q') p(qQ ) - p(q)[p(q'Q) - p(q') p(Q)]  

- p(Q)[p(qq') - p(q) p(q')]  (2.7) 

When Q consists of a single point q~, R(qq'q~) is identical with the fully 
truncated three-point Ursell function Pr(qq'q~) defined in the usual way. 

In the following, we shall make the assumption that the truncated 
correlations have an integrable decay at infinity, i.e., 

M 
[P~(q~'" q,)l <<.-~ (2.8) 

r = sup01x ~-  xjL for some p > v. Other more specific clustering assumptions 
will be specified later. 
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3. C O U L O M B  S Y S T E M S  

In this section, we show under mild clustering assumptions that the 
charge correlation functions of a Coulomb fluid cannot decay as a 
monotonous inverse power law. For simplicity we consider first the charge- 
charge correlations of a homogeneous one-component system in three 
dimensions with a pure Coulomb force F(x)=2/Ixl 2 (OCP). The same 
results hold in two dimensions or with an additional finite-range potential. 
The case of the higher-order correlations in v dimensions will be treated in 
Section 3.2. General multicomponent systems are discussed at the end of 
this section. 

3.1. The  T w o - P o i n t  Cor re la t ion  Funct ion  of  the  O C P  

Denoting h(r)= p(xO)/p 2 -  1, (r---]xt ), the spherically symmetric two- 
point Ursell function of the OCP, the second equation of the hierarchy 
(2.6) reduces in this case to 

fi i d e 2 e 2 
-~rh(r)=eE(r)+Th(r)+-fi52"f dyF(x-y)pr(xyO) (3.1) 

where E(r) is the radial component of the field determined by the Poisson 
equation 

1 d [rZE(r)] =e[ph(r)+b(x)] 
4nr 2 dr (3.2) 

The main point of our argument is that, because of the local differential 
relation (3.2), the decay of the field has to be slower than that of the charge 
density when the latter is algebraic, a situation which is shown to be 
incompatible with the equilibrium equation. This is formulated in a simple 
way in Proposition 1. 

P r o p o s i t i o n  1. Assume that (1.i) lim~ ~ oo rPh(r) = A < 0% for some 
p > 3 ;  

(1.ii) for [xl large enough [pr(xyO)J <~ M(t)/lxl P, 

t=min( Ix -  y[, lYl) with lim M(t)=O 
t ~ o o  

then A = 0. 

Remark. The condition (1.ii) is slightly stronger than (2.8) in the 
sense that some joint decay is required in the Ursell function as a second 
particle is sent to infinity, the third one being fixed at the origin. We show 
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in Appendix A that (1.ii) is compatible with known exact results and is a 
weak form of bounds indicated by perturbative expansions. 

ProoL Integrating the Poisson equation (3.2) gives for r va0 (Gauss 
theorem) 

c 4rcep dr'r'2h(r ') dr' 
E(r) =r2 r 2 -r 

with c = e f dx[ph(r)+ 6 ( x ) ]  the total excess charge, and hence, 

c 

E(r)--- r ( p _ 3 ) r  p 1 r--dz-r-t 

(3.3) 

from (1.i) 

(3.4) 

Moreover, the condition (1.ii) implies that (see Lemma 1 in Appendix B) 

; (1) 
dyF(x-  y) pr(xyO) = o ~ (3.5) 

Inserting (3.4) and (3.5) in (3.1) gives 

4 7 r e 2 p A (  1 ) 
~---f)  r~-_ 1 +o 

fl_, dh(r)__=e c 
dr r 2 

and therefore 

c 4 r ~ e 2 p A ( r f l ~ )  fl-lh(r) = - -e -+ r ( p - 3 ) ( p - 2 ) r  p 2 + 0  

Thus we conclude from (1.i) that c = 0 and A = 0 (c = 0 is the familiar per- 
fect screening rule). 

In fact, the a priori assumption (1.i) of algebraic decay can be 
weakened. The stronger Proposition 2 shows that the decay has to be faster 
than any inverse power whenever h(r) is monotonic at infinity and the 
three-point function obeys a reasonable bound in terms of h(r). It includes 
the Proposition 1 as a particular case, but it also excludes nonalgebraic 
decays, for instance (ln r)q/r p. The assumed bound on the three-point 
function is analogous to (1.ii) (see also Appendix A) and the proof of 
Proposition 2 is given in Appendix C. 

Proposition 2. Assume that (2.i) h(r) tends monotonously to zero 
a s  r - *  oo; 

(2.ii) For Ixl large enough, [pr(xyO)[ <<. Ih(x)l M(t), 

lira M(t) -- 0 
t ~ o  

t = m i n ( ] x -  y[, lY[), 

then limr_ o~ rPh(r) = 0 for all p > O. 
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In Propositions 1 and 2, the hypothesis of monotonicity played an 
essential role, and we cannot exclude an oscillatory decay of the type 
(cos 2r)/r p, because then the field and the charge density are of the same 
order at infinity. However, certain types of oscillations can also be excluded 
under slightly stronger conditions. For instance, we show in the next 
proposition (proof in the Appendix D) that if the dominant asymptotic 
term of h(r) has oscillations as r ~ o% the latter cannot be "too slow" or 
"too fast." 

Proposition 3. Assume that (3.i) h(r)=A(cos  2r~)/rP+f(r) with 
c~ > 0, ~ r 1, p > 3, and f ( r )  = O(1/r p+ 1), df(r)/dr = O(1/r p+ i); 

(3.ii) IxlP~dy[pr(xyO)l <.M, then A =0.  

3.2. H i g h e r - O r d e r  Corre la t ions  

We turn now to the higher-order correlations of the OCP keeping the 
notation 

p(xQ) 
h(x) = - - -  1, Q = (x~. . .x~)  

pp(Q) 

p(h(x)+ 1) can also be considered as the density in an inhomogeneous 
state with external charges at xl " -  x~. We allow a short-range potential as 
in part (b), Section 2, and a general dimension v ~> 2. 

Proposition 4. Assume that (4.i) l x }Plh(x )}~M for some p > 3 ,  
and lim). ~ ~ 2Ph(}~2)  = A(2) a.e. 2 = x/!xl; 

(4.ii) For fixed x l " " x ,  and lxl large enough 

[xf p fR(Xyxl " " " x~)l <~ M( t ) 

t = m i n ( l x - y l ,  lY[), lim M ( t ) = 0  
t ~ c o  

then A(2)= 0 a.e. 2. 

Remark. In (4.i) h(x) (which is now anisotropic) is assumed to decay 
radially as the same inverse power law for almost all directions. The con- 
dition (4.ii) on the truncated functions (2.7) is the analog of the bound 
(1.ii) in Proposition 1, and is also discussed in the Appendix A. 

The idea of the proof is exactly the same as that of Proposition 1. The 
technical difference is that here, because of anisotropy, the Poisson 
equation cannot be integrated in a straightforward manner. It turns out to 

822/39/3-4-10 



412 Alastuey and Martin 

be convenient here to study the asymptotics of the BGY hierarchy in the 
weak sense, i.e., integrating Eq. (2.6) on test functions. 

Proof. Let g(x) belong to C~ (the set of infinitely differentiable 
functions with compact support), and g(x) = 0 for ]x[ ~< a, a > supj ]xjl. 

We replace x by ).x in Eq. (2.6), multiply it by g(x), and integrate 
over x. 

By the assumption (4.i), the left-hand side of (2.6) is 

,36, fl-l j ~ dxg(x)(V xxh)(2x ) = 

The second term of the right-hand side is obviously O(1/2 p +~-t),  and it is 
shown in Appendix B that under the condition (4.ii) the last term is 

_ dxg(x) _ dyF(2x - y) R(2xyO) = o (3.7) pp(Q) 

This implies 

f dxg(x)E(2x; Q)=o(21-~_x) 

According to parts (a) and (b) of Section2, we split E(x;Q)= 
U(x) + E~ into its pure Coulomb part and short-range part, with 

V" EC(x)=cnvep(xlQ)=covelph(x)+ ~ 6(x-xj)]  
j = l  

(~o, = surface of the unit sphere in dimension v) and 

(3.8) 

E~ = -e  f dy(Vfb~ - y) p(y[Q) 

Since p(ylQ) is O(1/[yl P) and r176 has finite range, one has also E~ 
O(1/] x] P). This, together with g(x) = 0 for Ix[ <~ a, implies 

Since (3.9) holds for any g(x)E C~ ~ with g(x)= O, Ixl <~ a, one has also 

for any such g. 
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But by the Poisson equation (3.8), the fact that g ( x ) = 0  for 
[xf ~< supjlxj[ and scaling, we obtain for 2 > 1 

f dx(Vg)(x)'E(2x)= - f  dxg(x)V~'E(2x) 

= - ;t~o~ep I dxg(x)  h(;tx) 

Hence ~dxg(x))cPh(,~x)=o(1). Taking the limit 2--,oo we get by 
dominated convergence 

f dxg(x)~=O 

Choosing g of the form g(x)=cp([xl)@(2), with (psC~~ cp([xl)=0, 
Ixl ~ a  and @(2) any C ~ function on the unit sphere in N~, we obtain 
d2@(2) A(2)=0, and hence A(2)=0 a.e. 2. 

We conclude from Proposition 4 that A(2) vanishes in any open set 
where it is continuous. Since the correlations of a state extended in the 
whole space N~ are continuous, it is natural to have also A(2) continuous 
everywhere, and thus h(x) cannot decay algebraically in any direction. The 
situation will, however, be different for systems confined by hard walls, 
such as the semi-infinite Coulomb gas. In this case, it is known that even in 
the high-temperature phase, the decay of correlations parallel to the wall is 
algebraic (__- ]x[ 3 in dimension 3) and faster than any inverse power in all 
other directions. (m This fact is compatible with the present analysis. The 
correlations of this semi-infinite system are continuous except at the wall: 
they satisfy the equilibrium equations in the fluid, but vanish outside of the 
wall. One can check that Proposition 4 still applies, but now A(2) can be 
assumed to be continuous everywhere except at the direction 2 parallel to 
the wall. We then conclude that the decay is faster than any inverse power 
in all directions not parallel to the wall. Parallel to the wall, where the 
decay is indeed algebraic, we cannot draw any conclusion by the present 
method. 

3.3. M u l t i c o m p o n e n t  Systems 

To generalize the analysis to multicomponent systems, we consider 
~ e<p~h~2(r ), the charge density at Jxt = r when a particle of type c~ 2 is 
fixed at the origin, h~2(r)=(1/p~p~2)p(x~cq,x~%)-I and write the 
Eq. (2.6) for this quantity, 
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with 

e=p,2 E(r)+--~ E e2,p~th~,2(r) 
t.- Oq 

f + - - ' 2  2 P=2 ~1= e='e= dyF(xl-- Y) pT(xl~I' O~ y~) (3.m) 

1 d 
47tr----- 5 ~ [rZE(r) ] = ~ e~l p=th=l=2(r ) + e~2 6(x) (3.11) 

We see that in addition to the charge-particle correlation Y~,e=, p~h=~,(r), 
Eq. (3.10) involves the individual particle-particle correlation h~==2(r), and 
these different types of correlations could have different decays. However, 
in a regime of monotonuous decay, h=,~2(r ) has a definite sign for r large 
enough. For obvious reasons of electrostatic attraction and repulsion, we 
must have h=~2(r) positive (respectively negative) when e~l and e=2 have the 
opposite (respectively the same) sign, i.e., 

e~,e~2h~,~,(r) < 0 for r large enough (3.12) 

With (3.12), the decay of the particle-particle correlations cannot be slower 
than that of the charge-particle correlations since 

<~[p~e~e~2h~2(r)[ = le~2[ ~ e~p~h~2(r) 

Then we have the exact analog of Propositions 1 and 2, for instance 
Proposition 5. 

Proposition 5. Assume that (3.12) holds and (5.i) 
l i m ~  co rP[Z~I e~p~h~2(r)] = A, p > 3; 

(5.ii) For IXl[ large enough Ipr(xl~l,0~2, Ya)l <<.M(t)/[Xl[ p, 
t = min(Lx~- Yl, [Y[), l im,~ oo M(t)=0, then A =0.  

4. N O N - C O U L O M B  S Y S T E M S  

In this section we treat the case of long-range potentials of the type 
(a), (b) of Section 2 characterized by 0 < s < v, s :~ v - 2, and show that in 
all cases the decay of correlations cannot be faster than any inverse power. 
We consider a one-component system, with neutralizing background PB # 0 
when 0 < s < v -  2. The results are summarized in the following. 

Proposition 6. The truncated correlations of an equilibrium state 
characterized by Eq. (2.2) and potential (a), (b) (s=~ v -  2) cannot decay 
faster then Ix[ -~2~-s~ when 0 < s < v - 1  and ]xl -~+2) when v - 1  <<.s<v. 
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This will follow from the next lemma where it is shown that the struc- 
ture factor S(k) 

= e2p f dx#kxp(x j 0) = e2p f dxe'k~[ph(x) + 6(x)] S(k) 

= e2p(ph(k) + t)  (4.t) 

has an algebraic singularity at k = 0 when s ~ v -  2. 

I . emma.  Assume that (i) the condition (2.8) holds for p > v + 1 and 
n = 2, 3, 4 (ii) for Ix] large enough ]xl p S dylpr(xyO)[ < M, then 

S(k),,, (flbCv) -~ [k[ ~-s, [kl -* 0 (4.2) 

ProoL Writing Eq. (2.6) with Q = { x l = 0 } ,  a single point at the 
origin, gives 

fl-1(Vh)(x) = e ~ f dyF(x - y) p(y  [ 0) 

+ ~  f dyF(x-  y)[pr(xyO) + 6(y) pr(xO)] 

e 2 

=e2 f dyr (x -  y)P(Y[ 0 ) +pz--f dyf(y) r(xy) (4.3) 

with 

r(xy) = pr(xy0) + c~(x - y) pT(X0) + 6(X) pT(yO) (4.4) 

To obtain the last term of (4.3) use has been made of the translation 
invariance of the correlations and of the antisymmetry of the force. We 
take the Fourier transform of Eq, (4.3) (notice that by the assumption (ii), 
r(xy) is jointly integrable in x and y), and with (4.1) we get 

ikfl-I S(k) - 1 = -ik~(k) S(k) + -- f dyf(y) f dxeikXr(xy) 
P 

Multiplying (4.5) by i(s ( f ]  = 1) for k4 :0  leads to 

where we have set 

(4.5) 

~(k) 5;(k) = fl -~ 1 5;(k) +f(k__._)) (4.6) 
fie2p Ik[ 

e 2 

f ( k ) =  - i - -~"  f dyF(y) f dxeigXr(xy) 
P 

(4.7) 
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It is known t~~ that under the condition (i) the following sum rules are 
valid: 

e f d x p ( x l x l ' "  xn) = 0 (4.8a) 

e f dxxp(x lx l" '"  x~) = 0 (4.8b) 

for n --- 1, 2. 
It is easy to see from the definition of the truncated functions that they 

imply 

f dxr(xy) = 0 (4.9a) 

f dxxr(xy) = 0 (4.9b) 

We now let Ikl--* 0 in (4.6). It follows from (4.8) and (4.9) that ~ ( k ) =  o(1) 
and 

f dxeikxr(xy) = f dx(e ik~ - t - ik" x) r(xy) = o(Ikl) 

as [k[-~ 0. Assumption (ii) implies that also f ( k ) =  o([k[), and hence (4.6) 
gives 

lim ~;(k) S(k) = fl 
Ikl  ~ 0 

This, with (2.1) gives the result of the lemma. 
Then the following considerations give the result of the proposition. 

Consider first the case where 0 < s < v - 1. If the conditions of the lemma 
are satisfied, then h'(k) has a singularity of order ]k] ~-s as Ikl---' 0, and 
therefore h(x) has a term of order ]xl-(Zv-s) in its asymptotic development 
around [xl = ~ [h(x) may however have slower decaying contributions 
coming from other possible singular points of h'(k) located on the real 
axis]. If the conditions of the lemma do not hold, then some correlations 
have to decay as or slower than Ix1-(v+~), hence not faster than lxj-(2~ ~) 
since 2v - s > v + 1. 

When v - 1 ~< s < v, the result of the lemma is still true if the conditions 
(i) and (ii) hold with p > s + 2. Indeed, in this case, the analysis of Ref. 10 
shows that the sum rules (4.8a) and (4.8b) are valid whenever the cluster- 
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ing is faster than the force ( ~  Ixl-(s+~)) and Ixi-(~+2), respectively). Then 
we must again conclude that h(x) cannot decay faster than Ixi-~2~-~). Since 
now 2v-s<<,s+ 2, there is a contradiction with the hypothesis (i) with 
p > s + 2. Therefore the clustering cannot be faster than Ixl -(,+2) 

C o m m e n t s  

(1) In the Coulomb case s - - v - 2 ,  S(k) is not singular at k = 0  and 
the result (4.2) of the lemma is the Stillinger-Lovett relation. Its derivation 
here is essentially identical to that given in Ref. 12. 

(2) The behavior (4.2) of ,~(k) for k -~ 0 is usually obtained from the 
heuristic argument that the Fourier transform of the direct correlation 
function ~(k) behaves as - /~ ; (k)  as k--,0. ~2) Here, under the cluster 
assumptions of the lemma, Eq. (4.2) is an exact result. 

(3) At high temperature and for 0 < s < v - 1 (s v a v - 2), it is believed 
that the conditions of the lemma are fulfilled, and moreover that ~(k) has 
no other singularity for real k than (4.2). Hence 
S(x) ~-const.(k~T/b)lxl (2~-s) would be the correct asymptotic behavior. 

In the case of the bidimensional electron film v=2 ,  s = l  
(corresponding to the border line s =  v - 1), we find that S(x) has to decay 
as or slower than Ix1-3. At high temperature, it is again believed that 
S(x) ~ -4kBTlxl - 3 is correct. (14) 

(4) As mentioned in the proof of Proposition 6, h(x) can decay 
slower than 1/Ix] 2v-'. This is nicely illustrated in the one-dimensional 
model of Dyson and Mehta (~5) with - l n  [xl interaction. Indeed for kBT= 1 
the asymptotic behavior is -1/n2pZlxl2 , but for k~T= 1/4 one finds 
cos(2np Ixf )/(4p Ix[ ). 

(5) The extension of the lemma and of Proposition 6 to multicom- 
ponent systems is immediate. It is found that the Fourier transform ~(k) of 
the charge-charge correlation 

S(x) = ~ e~e,~[p(x~, 07) - p~p~ + 6~6(x)p~] 
c~7 

behaves as in (4.2). Hence, the particle correlations (or at least some of 
them) must have a slow decay. 

A P P E N D I X  A 

In this Appendix, we give some arguments indicating that the bounds 
(ii) of Propositions 1, 2, 4 are quite reasonable. We first consider the case 
of Proposition 1. 
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Since p(xxO)= 0 in the OCP, we obtain from the definition of the 
Ursell correlation functions 

pr(xxO) = p r(x00) = -2p3h(tx[) (A1) 

Furthermore, the perfect screening rule applied to the excess charge density 
ep(y[xO) gives (1~ 

f dyp r(xyO) = -2p2h(lx[) (A2) 

It is obvious that the bound (1.ii) is compatible with the exact identities 
(A1) and (A2). 

Starting from the usual Mayer's expansion and using the principles of 
topological reduction, it can be shown ~ that 

p r(xyO) = p3 {exp[J (xy0) ]  - 1 } {1 + h(lxl) + h(lyl) + h(tx - y])} 

+ p3[h(lxl)h([yl)+h(]xl)h(Ix-yl)+h(lYl)h( lx-yl)  ] exp[Y-(xy0)] 

+ p3h(lxl) h(I Yl) h(Ix-  Yl) exp[Y--(xy0)] (A3) 

where Y(xyO) is formally given by the following diagrammatic expansion: 

Y-(xyO) = The sum of all simple connected diagrams 
with the three root points x, y, and 0, 
one or more unlabeled p-weighted field 
points, three or more h bonds, no 
articulation points, no direct bonds 
connecting the root points and no articulation 
pairs, such that the diagram does not become 
disconnected if the root points are removed (A4) 

The diagrams appearing in (A4) are highly connected; for instance, a field 
point is at least connected with three other points. If h decays algebraically, 
as assumed a priori in Proposition 1, there exist some constants b and c 
such  as 

which implies 

b 
Ih(Ixt)l < - -  (A5) 

c + l x l  p 

f dyh(lyt)h(lx- yl) < 2Pc -1-IX[ p 
(A6) 
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where d is some constant. Using (A6), it can be easily checked that each 
diagram of (A4) is bounded, for [xf sufficiently large, by N(t)/Ixl p, with 
t=min( ly] ,  I x - y l )  and N(t) a bounded function which is O(1/t e) as 
t ~ oo. This indicates that Y-(xyO) and consequently pr(xyO) are bounded 
by similar expressions. Let us emphasize that the bound (1.ii) is much 
weaker than the previous semiheuristic estimation, since M(t)  is only 
assumed to go to zero at infinity. 

The bound (2.ii) is compatible with (A1) and (A2). Assuming a priori 
a "slow" decay of h [for instance h(lxl/2) < const '  h(lx[) for Ixl sufficiently 
large], we estimate from (A4) that pr(xyO) should be bounded by a con- 
stant times th(Jxl)l Ih(t)J for IxJ and t sufficiently large. The bound (2.ii) is 
much weaker than this estimation. 

In Proposition 4, there are n fixed points ( x t ' " x , ) =  Q. Similarly to 
(A1) and (A2), we have 

R(xxQ ) = - 2 p [ p ( x Q  ) - pp(Q ) ] 
(A7) 

R(xxjQ ) = - p [ p ( x Q  ) - pp( Q ) ] - pp( Q ) k( Ix - xfl ) 

and 

f dyR(xyQ) = --(n + 1 )[p(xQ) - pp(Q)]  (A8) 

Taking into account the general clustering property (2.8), we see that (4.ii) 
is compatible with (A7) and (AS). Similarly to (A4), we may write a 
diagrammatic expansion of R(xyQ) in terms of h. As before, for the cases of 
Propositions 1 and 2, the bound (4.ii) appears to be much weaker than the 
estimations obtained from this expansion. 

A P P E N D I X  B 

In this Appendix, we prove three lemmas useful in the derivation of 
Propositions 1, 2, and 4. 

k e m m a  1. If the condition (1.ii) is fulfilled, then 

f J dyF(x-  y) pT(xyO)= o ( m )  

,Drool The short-range part of the potential gives a contribution to 
the left-hand side of (B1) which is bounded by 

J dy y)l = o (B2) 
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where M =  sup{M(t);  t ~> 0}. Thus it is sufficient to consider the Coulomb 
part of the force for proving (B1). x being given, we have 

/ = 1  

~1 = {]Yl ~ Ix[; lYl ~< ]Y--x]} 

~2 = { l y - x l  ~< Ix[; ly-xl <~ lyl} (B3) 

~3 = {Ix[ ~<lYl; Ixl ~ < l y - x l }  

Using the bound involved in (1.ii), we obtain for Ix[ large enough 

fe dyU'(x- y)pr(xyO) <T~--(7 Ie I dy)y_xl2M(ly[) 

< T~  ;~, dyM('y[)ly'2 

1 f dyM([yl) (B4) 
< ~-f'~ yl~<lxl lYl - - ' - - - - 7 -  

Since M(t) goes to zero as t ~ ~ ,  we have 

, M(lyl)  
Iyt <_ txt aY---(~= ~ xl ) 

and thus from (B4) 

Similarly, we find 

(B5) 

o 1 

dyF~(x - y) pv(xyO) = o 
2 

(B7) 

Since the points x, y, and 0 play identical roles in pr(xyO) the bound (2.ii) 
also gives 

M(Ix[) Ipr(xyO)l < (B8) ly-xl" 
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for y e 93. Therefore, we have 

1 
f~3dYU(x- y)pr(xyO) <M(Ix[ f~3dy [y_ xtp+2 

f 1 4rcM(lxi ) 
<M(lxl)  ly_ xlP+ 2- (p_ l )lx[P 

y - xL ~ Ixl 

(B9) 

This, with (B6) and (B7) gives the result of the lemma. 

Lemma 2. If the conditions of Proposition 2 are fulfilled, then 

f dyF(x-y)pr(xyO)=o(lxlh(lxl))+o(f-~Ix4<~ydyh(ly])) (B10) 

Proof. As in Lemma 1, it is again sufficient to consider the Coulomb 
part of the force. The integral upon y is split into three parts as in (B3). By 
identical manipulations to the ones leading to (B6) and (BT), we find 

I~1~2 dyFC(x - y) pT(xyO )= o(Ixl h(Ixl ) ) (ml) 

Similarly to (B8), we can write 

IPT(XyO)f < M(I x I)Ih(Ix - yt )1 (B12) 

for y e 93. Then, we have 

f~3 dyU'(x- y) pv(xyO) < M(lx[ 

< g(Ixl 

M(Ixl 

< ix12 

Ih(Ix- yl)t 
y~dy ix_yl2- 

dy!h(Ix-yl)l 
flx-yj~lxl ]x-yl 2 

Ixl ~ lyl dy Ih(tyl )1 (B13) 

The condition (2.i) implies that h(ly[) has a constant sign for ]Yl large 
enough and then 

f dylh(ly[)l= y~ dyh(lyl) (B14) 
xl ~< ]yt x[ ~< lyl  
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for Ixl large enough. Using (B14) in (B13) together with M(Ixl)--+0 as 
Ixl ~ 0% we obtain 

o 1 lyl)) (BI5) fe3dyFC(x- y) Pr( xyO)= (~-~ f,x,~<,y, dyh( 

Combining (Bl l )  and (B15), we find (B10). 

k e m m a  3. If the condition (4.ii) is fulfilled, then 

f dxg(x) f dyF(2x- y)R(2x, y, Q)=o 

Making the variable change x ' =  2x, we transform the left- Proof. 
hand side of (B16) into 

, X f dx I dyF(x'- y) R(x'yQ) (B17) 

Since g(x) vanishes for [xl ~< a, the integral upon x' in (B17) is restricted to 
]x'] >~ 2a. Using Lemma 1 with R in place of p T, X' in place of x, and Q in 
place of 0, we then obtain 

//x'~ 1 ~ l f dx'g(~) f dyF(x'- y)R(x'YQ'):~ f dx'g \-2] (B18) 

which leads to (B16) by returning to the variable x = x'/2. 

APPENDIX  C 

In this Appendix, we give the proof of Proposition 2. 
Using (3.3) and lemma2 of Appendix B, the BGY equation (3.1) 

becomes 

fl-1 dh(r) c I(r) + o(I(r)) + o(rh(r)) ( e l )  dr = e r-5- 

where 
__ 47ze2p (oo 

I(r) r2 Jr dtt2h(t) 

and c is the total excess charge defined in Section 3.1. Using the general 
clustering property (2.8) and integrating (C1) from r to oo, we obtain 

B -lh(r) = - e  - + o (C2) 
r 

which implies c--O. 
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Let us integrate now (C1) from r to r+6 where ~i is some fixed 
parameter, 6 > 0. We get 

=fl-l[h(r)-h(r+6)] +o dtth(t) (C3) 

Using condition (2.i) we have for r sufficiently large 

Ih(r) - h(r + 6)1 < 2 Ih(r)l 
(C4) 

s < ~ ( 2 r  +6)lh(r)[ 

Thus, for any given ~ > 0, there exists R~ such as for r > R~ the modulus of 
the right-hand side of (C3) is bounded by 

2f1-1 [h(r)] + ~7~e2p6r ]h(r)l (C5) 

Furthermore, there exists R 2 such as for r > R2, the modulus of the left- 
hand side of (C3) is bounded below by 

1 ff+~ dtI(t) (C6) 
2 

Denoting R3 = max(R~, R2), we then obtain for r > R~ 

f~+~ dtI(t) 4fl-1 Ih(r)t + 2erEpe26r Ih(r)i (C7) < 

The mean value theorem gives 

/ +a dtI{t) = 6I(r + 4) (C8) 

with 0 ~< ~ ~< 6. The condition (2.i) implies that h(r) has a constant sign for r 
sufficiently large. We then have 

4Jze2P f ~ dtt2th(t)l>47ze2pI~ dtlh(t)] (C9) II(r + 4)1 = (r + ~)----~ r+~. r +  

which implies using (C8) 

~j+~dtl(t) >4z~e2p6(f~dt,h(t)l-f:+'dt]h(t)l) (C10) 



424 Alastuey and Martin 

Combining (C7) and (C10), we obtain 

dtlh(t)l<b 1 4 ~  Ih(r)J+~rlh(r)l (Cll)  

where we have again used the monotonic decay of [h(r)l and ~ ~< 6. Defin- 
ing R = max JR3, (2~/~)( 1 + 1/rcpfle262) ], (C 11 ) gives for r > R 

fr~ dtlh(t)[ < erlh(r)t (C12) 

The inequality (C12) can be rewritten as 

d l n ~ ,  dt[h(t)[<~ln (C13) 

Integrating (C13) from R to r and using the monotonicity of the logarithm, 
we find 

Ir dtlh(t)l < IR dt[h(t)l (C14) 

Since 

f dtlh(t)[ > dtlh(t)l > rlh(2r)] (c15) 

we finally obtain for r > 2R 

Ih(r)l< ~ dtlh(t)l (C16) 

The finat step of the proof immediately follows from (C16). For any 
given p > 0, there exists some R > 0 such as the inequality (Ct6) holds with 
e = lip. This implies 

lira rPh(r) = 0 for any p > 0 (C17) 

which is the required result. 
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A P P E N D I X  D 

We prove the Proposition 3. 
Working out the asymptotic behavior of the field from (3.3) and (3.i) 

gives (setting). = 1) 

4 eO fr  cos,  (1) 
E(r) = r2 r2 dt t-7-- T + 0 

=~+c  4rcepA[ r p- 1 +~ ( p + ~ - 3 ) r  2 f oo dttp_7_~_g__~_2j+ t~ 7 ( 1 )  (D1) 

and by the Riemann Lebesgue lemma 

rlsfr * sint~ l f~ ( ~ )  
dttp+--------g~_ 2 rp_l+ ~ t p + ~ _ 2 = O  (D2) 

The hypothesis (3.ii) implies that the last term of the righ-hand side of (3.1) 
is O(1/rP). Thus with (3.i), (D1) and (D2) we find that the asymptotic 
behavior of (3.1) is 

- A s  m 
sin r ~ 4~ze2pA sin r ~ ec 

r p - a + I  ~ rP - 1 + ~  ~ r2 

+ 

This implies c = 0 and A = 0 for all c~ > 0, ~ 4= 1. 

0 < ~ < 1  

~>1  
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